A note on an integral operator induced by Zygmund function

نویسندگان

چکیده

In this note, by means of a kernel function induced continuous f on the unit circle, we show that corresponding integral operator Banach space AP is bounded or compact precisely when belongs to big Zygmund class ?* little ?*, where consists all holomorphic functions ? ?C\S1 with finite norm. This generalizes result in Hu, Song, Wei and Shen (2013) [5] meanwhile may be considered as infinitesimal version main obtained Tang Wu (2019) [8].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On an Integral-type Operator from Mixed Norm Spaces to Zygmund-type Spaces (communicated by Professor

This paper studies the boundedness and compactness of an integraltype operator from mixed norm spaces to Zygmund-type spaces and little Zygmund-type spaces.

متن کامل

On an integral operator

In this paper we define a general integral operator for analytic functions in the open unit disk and we determine some conditions for univalence of this integral operator.

متن کامل

A Note on Integral Operators with Operator Valued Kernels

In this paper Lq → Lp boundedness of integral operator with operator-valued kernels is studied and main result is applied to convolution operators.

متن کامل

On Integral Operator Involving Generalized Hypergeometric Function

Due to rigorous work on integral operators and the hypergeomet-ric functions, we define here an integral operator involving generalized hypergeometric function. By means of this generalized function, we introduce new classes of analytic functions and study their properties. 1 Introduction and preliminaries. Let H be the class of functions analytic in U := {z ∈ C : |z| < 1} and A be the subclass...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2023

ISSN: ['2406-0933', '0354-5180']

DOI: https://doi.org/10.2298/fil2303789c